RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College under University of Calcutta)

B.A./B.SC. FOURTH SEMESTER EXAMINATION, MAY 2012

Date : 21/05/2012 SECOND YEAR COMPUTER SC. (Honours)			
Time	: 11 am – 2 pm	Paper : IV	Full Marks : 75
Ansv	ver <u>any five</u> of the f	following questions :	
	 a) Explain Nyquist b) What is delta mo c) "To transmit a fil d) What do you mea e) Explain the conce 	theorem with its importance. dulation? le through LAN, D/D encoding is used" —Justify an by bit rate and band rate? ept of bandwidth.	[4] [2] [2] [2+2] [3]
	 a) Distinguish betw model. b) Describe advanta c) Illustrate CRC with the c d) Write down the c 	ween connection oriented and connectionless services in Netwo ages of digital transmission over analog transmission. ith proper example. comparison between CRC and Check sum.	ork layer of OSI [3] [4] [5] [3]
3.] e	Describe different f even and odd numbe	lags in 8085. Write a assembly language programming in 8085 t ers from an array.	to find number of [5+10]
4. ; }	 a) Make a brief c microprocessor. b) Discuss the use o c) Why 8155 is call 8155. 	comparative study for maximum and minimum mode of op of ALE signal in 8085 microprocessor for multiplexing of address led a multipurpose programmable device? Describe the format of	beration in 8086 [6] and data bus. [4] f control word in [2+3]
5. ; t	 a) If M be a messa; that T = pow(x, divided by P. b) Describe OSI lay 	ge of length K bits and P be a predefined divisor of length $(n+1)$ n) + F will be divisible by P, where F is the remainder when pores with their functions.) bits, then prove ow (x, n) will be [4] [11]
6.] ;] (Explain the followir a) CALL b) LDA c) IN	ng instructions of 8085 with proper example and timing diagram :	[3×5]
7. ' ;; 1 ;;	Write notes on (<u>any</u> a) IP addressing b) TDM, FDM and c) ISDN 1) TCP	<u>v three</u>) : WDM	[3×5]

e) MIME